Graphene allows strange form of ice to occur at room temperature

We are all familiar with water, and we see it every day in many forms: in the bulk as a glass of water, in the crystal phase as ice, and the vapor phase as steam. While the behavior of these phases seems predictable, water is an unusual substance that behaves unlike any other small molecule we know of. This fact is particularly notable when water is viewed at small-length scales or confined to small compartments. An international team of scientists recently discovered some intriguing structural characteristics of water confined in graphene nanocapillaries. In these studies, the researchers deposited a graphene monolayer on a small grid, added a small amount of water, and then covered it with another monolayer of graphene. This sample was left overnight to allow excess water to evaporate, eventually bringing the graphene layers together so that only a small amount of adsorbed water remained between them. The water left behind showed some unusual structural properties. Structural characteristics of water are influenced by hydrogen bonding among adjacent water molecules. In the liquid state, water exhibits a partially ordered structure. In the crystal state, water molecules begin to conform to more rigid lattice structures, forming ice. As ice, the water molecules typically take on a geometry that is a three-dimensional “tetrahedral” structure, which basically looks like a square pyramid. Read 4 remaining paragraphs | Comments

Read More:
Graphene allows strange form of ice to occur at room temperature

Upload Response

Your data will be stored in the mainframe. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.